Using Interface Specifications for
Verifying Cryptoprotocol

Implementations
Jan Jurjens

Computing Department
The Open University, GB

o
J.Jurjens@npen.ac.uk
http://www.jurjens.de/jan

Crypto-Protocol Analysis

State of the affairs:

A lot of very successful work in formally verifying
abstract models of crypto-protocol design.

* virtually every formal method has been applied

* seemingly more people working on verification than
on designing protocols

* efficient tool-support usable by academics or
specialists

* sometimes used at industrial size protocols (usually
by tool developers themselves)

(Almost) solves the problem whether design is secure.

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

Problem

How do | know a crypto-protocol implementation is
secure ?

Possible solution:

Verify design model, write code generator, verify code
generator.

Problems:
* very challenging to verify code generator

* generated code satisfactory for given requirements
(maintainability, performance, size, ...) ?

* not applicable to existing implementations

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 3

Alternative Solution

Verify implementation against verified design or directly
against security requirements.

So far applied to self-written or restricted code.
Surprisingly few approaches so far:
* J. Jurjens, M. Yampolski (ASE05):

methodology + initial results for restricted C code

* J. Goubault-Larrecq, F. Parrennes (VMCAI'05):
self-coded client-side of Needham-Schroeder in C

* K. Bhargavan, C. Fournet, A. Gordon (CSFW'06):
self-coded implementations in F-sharp

May reduce first problem. How about other two ?

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

Towards Verifying Legacy Implementations

Goal: Verify implementation created independently.

Options:

3) Generate models from code and verify these.

* Advantages: Seems more automatic. Users in practice can
work on familiar artifact (code), don’t need to otherwise
change development process (!).

* Challenges: Currently possible for restricted code or using
significant annotations. Need to verify model generator.

2) Create models and code manually and verify code against
models.

* Advantages: Split heavy verification burden. Get some
verification result already in design phase (for non-legacy
iImplementations).

2 | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

Background: Model-based Security Engineering

Requirements ldea: Extract mgdels
from artefacts In
yeave 1' Analyze development and
In against

use of software.
(UML) Models % i
Code-/ Generate/ . _
Testgen. Verify Configurations | @& =

Source Code

=» Long-term goal: Tool-supported, theoretically sound,
efficient automated security design & analysis.

Why Behavioural Interfaces 7

Goal: verify implementations of significant complexity
automatically and exhaustively against non-trivial
requirements.

Have software model-checkers, but so far not used for
very complex implementations and very sophisticated

requirements (e.g. involving Dolev-Yao type attacker
models).

Do have powerful type checkers.

ldea: push the envelope by introducing behaviour into
types =» behavioural interfaces

Long line of foundational work (rely/guarantee etc.), some
tools (SLAM, Blast)

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

Interface based Security Analysis in FOL

Based on usual Dolev-Yao model.

Approximate adversary knowledge set from
above:

Predicate knows(E) meaning that adversary
may get to know E during the execution of the
system.

E.g. secrecy requirement:

For any secret s, check whether can derive
knows(s) from model-generated formulas
using automatic theorem prover. [ICSEO05]

Fj Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 8

C:Client S:Server

| init(N,Ke, Sign(C:Ke) [
Interface (:
resp({Sign, —1(K::init1) init,

to FOL AN

) Szg‘nK 1(S:: KS)) [snd (Extinit, (init3))

N — ir'litz]
Exty ,(Cs)) = S A xchd ({s})
Extyn (Decy-1(ck))) ?
— N

knows(N) D(nows(KC)Dmows(S/gnK A«(C: KC))
[J0init,,init,init,. [knows(init,) [Jknows(init,) []
knows(init;) [/snd(Ext, . (init,)) = init,
[] knows({Sign,_«(...)}) LJ[knows(Sign...)]
[JOresp,,resp,.[...[]...]]

Interface Model Verification

Jessie — using RSA & Server authentication (0
- knows (ArgC 3)
— et crontd & (egual (fst (ArgC _3), type_serverkeyexchanges))
: & lequal (sndiext (sndisnd (ArgC 3)), k _call, skey))
& (=gual (znd (ext (snd (ArgC_2), k_ca)), fstisnd(ArgC_3))))
ServerHello(R ;))
Cer’mﬁcate(stgﬂx B Ky => (
{(knows (ArgC 4 1)
ClientKeyExchange(anc, (pms)) - =
[Tequaldfstienty (e)] & equal (ArgC_4 1, type serverhellodons))
Finished(symency, (md3.), symenc, (sha,) FO L :> (
{ { true & equal(ClientKeyExchange, enc(premasterksy, skey)
[symdec, (mds
Finished(symene,, (mds,), symenc, (shag)) symadecy (sha
[symdecy (mdS: D = md5. ~
symdecy (sha ") = sha.] HandshakeD one ,
]] P--—---————— Conjecture --
g Re'i=arge,,
CR; ;rgis;"] pms’= degcx_— (arges.)
N K = kgen(pms ', Ry, R) . .

ol s g s == arge s input formula(attack, conjecturse, |

mdSg == arge,, shac’==arg..; -

g | knows (mastersecret) 1.

Check whether can derive __JATP L
analvzing results ...
l(’?()b“/é;(&;). model found/total failure
time limit infeormaticon: 1% total / 18 =strategy
{leaving wrapper).

If yeS, generate attaCk tazk myUML PID14%]1 on atbroyl hasz status 2UCCEZRS

{model found by strategy 300) consuming 1 seconds

scenario

e—3ETHED done. exiting

If no, s secret (wrt our attacker).

‘\ﬁ_j Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 10

Just an Exercise in Code Verification ?

State of the art in practical code verification: execution
exploration by testing (possibly generated from
models). Limitations:

* For highly interactive systems usually only partial test
coverage due to test-space explosion.

* Cryptography inherently un-testable since resilient to
brute-force attack.

General approaches to formal software verification exist
(Isabelle et al), but limited use by (civilian) software
engineers, and usually not for sophisticated properties
like Dolev-Yao security.

=>» Develop specialized verification approach.

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 11

Interface: Model vs. Implementation

> compare meaning! >

<=Backtrace — Defined during
= assignments = model creation

Sent and received data Elements of connections

ﬁFind ﬁHas

| Jessie — using RSA & Server authentication

ate(s) ClientHelloR) - cwedte

Implement
'atl O n <:JO n S iStE; n %} Certificate(sign,, (SS K

ClientKeyE=change(enc, .(pms))

[[equaldstient, | (502, B]]

Finished(symenc, (md5 ., syrmenc, (sha.))

[symdecy (md5,

Finished(symenc, (md5,), symenc, (sha) symdecy (sha .

. e — [symdecy (md5,) = md5. A 4 4 { | [| &
@ | Jan Jirjens, OU: Using Interface Specifi T At strdcwnouci

Input / Output

To extract input/output labels for state machine
transitions, analyze input / output mechanism used
In the iImplementation.

Many implementations (e.g. Jessie and JSSE) use
buffered communication where the message
objects implement read and write methods.
Translate these method calls to input / output
labels (need to track successive subcalls).

Send Receive
write(data,),..., write(data_) read(data,),...,read(data_)
\ f] .

N Buffer $ bytess < Buffer /

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 13

Example

Sending a protocol message (e.g. ClientHello):

* create the clientHello object with appropriate
message parameters

* create the message object msg by giving the
clientHello object as an argument

* call the write method at the msg object

CllientHello clientHello = new CllentHsllo (segeslon.protocol, cllentRandom, sesslonld,

gesslon.enabledfultes, comp, extenslons) ;
Handshake msg = new Handashake (Handshake.Type.CLIENT HELLO, clientHello);
mag.write (dout, versilon) ;

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 14

C:Client S:Serve
- : cnentHen il
Example: Sk J|*
Interface
S peC Of S S L ServerHello(R)
e
p Certificate(signﬁ _. (2 E.n
ClientE eyExchange(ency, .(pms))
@al(fat(extﬁ (e8] | >
g q Finished(symenc, (md5.), symenc, (sha_))
-

) Identify program points:
value (r), receive (p), guard (g), send (q)
II) Check guards enforced

I[ﬁ§| Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

15

Checking Guards

Guard g enforced by code?

p
b) Generate runtime check

for g at g from diagram: Tequal(fst(enty (e)), 8]
. _ equaltstie Calts
simple + effective, but q i

performance penalty. g

c) Testing against checks

(symbolic abstractions for crypto). [|[CFEMOZ]

d) Automated formal local verification: conditionals

between p and g logically imply g (uses Prolog).
[ASEO06]

o Jan Jirien¥o0@tQsilierniiraed Sywehications dskalerifyiny ceioptopritd e 16

Execution Path Diagram for method 551L5ocket.doClientHandshake()

msg = Handshake.read(din, certType); =

try
only possible way | g
without throwing | Ferei=5 SESSiON.trustManager.checkServerTrusted |
exception |_=———= (peerCerts,suite.getAuthType());
_ =

msg = new Handshake(Handshake Type.CLIENT_KEY_ EXCHANGE, ckex);
msg.write (dout, verS|on)

::'__,_ = : o |
- -

o) o e o |

Modular Verification with Interfaces

For program fragment p implementing a given
interface, generate set of statements
derive(L,C,E) such that adversary knowledge is
contained in every set K that:

— for every list | of values for the variables in L that
satisfy the conditions in C contains the value
constructed by instantiating the variables in the
expression E with the values from |

When considering single protocol run, can
construct finite set of such statements similar to
FOL formulas from security analysis.

E | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 18

Modular Verification: Formalisation

send: represents send command

g: FOL formula with symbols msg_ representing

nth argument of message received before
program fragment p is executed

[d] p Eg : g checked in any execution of p
initially satisfying d before any send

write p g for [true] p Fq.
:g(c/\ d = g, no send in q)

[d] if ¢ then p else ¢

2 | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 19

Modular Verification: Some Rules

[d] if ¢ then p else ¢

:g(c/\d=>g, no send in q)

:g(—lc/\d:> g, no send in p)

[d] if ¢ then p else ¢
[d] it e tﬂf;gdse q=g(d = ¢) :c[iciig?qz =gg

] it e t['ﬂg;ge'se a=g'd = %) [[cczif:]};i%d/ = d
$:d:]}€9;:igd = T =e€

Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 20

Tool Support

[FASEO05,ICSE06,ASEQ7,
STTTO7,ICSE0S]

Java editor |- (data flow
‘ UML editor |~ ——r, . —
s ap -—
Code
Java ||UMLsec ;wthrt’- Text | | Attack
code || model _I_S':;S S| |Report| | Trace
N S, LG
:E% Assertion/Test Analyzer
— Generator
S 4p 4
Automated
Gontrol 5 lgocc?é Theorem || Attack
Flow g B s Prover generator
Graph | 4> %
> FO
Security [L Prolog
P Analyzgr fmla > prog.

Also:
 configuration
analysis:
(user [FASEO8]
permissions,
firewall rules/
policies)
* code
traceability
(with Yijun Yu)

Open-source

Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

21

Some Applications

T --Systems- =
Analyzed designs / implementations / Allianz @)
configurations e.g. for

* Biometry- or smart-card- Deutsche Bank
based identification oVereinsbank

* authentication (crypto protocoTlsy \/

* authorization (user permissions, CEPS”

e.g. SAP systems)
Analyzed security policies, e.g. for
privacy regulations.
B | sosnisnn B | e
| O,

und Farschung und Technologie

BMW Group

Minchener Ruck
= [unich Re Group

2 | Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 22

Conclusion

Seemingly first attempt at formally based security
verification for crypto-based Java legacy
Implementations.

Use interface specification to make verification of
large-scale implementations feasible.

Goals: Emphasis on automation, reach efficiency

using abstraction tailored to verification problem.

Experiences so far encouraging.

Still many challenges to address — collaboration
always welcome !

E Jan Jurjens, OU: Using Interface Specifications for Verifying Cryptoprotocols

23

Questions ?

More information
(papers, slides, tool
efc.)

|,,J.J.-_II e - ZF_I'BSS

J. Jurjens@npen ac.uk

