
Using Interface Specifications for
Verifying Cryptoprotocol

Implementations
 Jan Jürjens

Computing Department
The Open University, GB

http://www.jurjens.de/jan

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 2

Crypto-Protocol Analysis
State of the affairs:
A lot of very successful work in formally verifying

abstract models of crypto-protocol design.
• virtually every formal method has been applied
• seemingly more people working on verification than

on designing protocols
• efficient tool-support usable by academics or

specialists
• sometimes used at industrial size protocols (usually

by tool developers themselves)
(Almost) solves the problem whether design is secure.

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 3

Problem

How do I know a crypto-protocol implementation is
secure ?

Possible solution:

Verify design model, write code generator, verify code
generator.

Problems:
• very challenging to verify code generator
• generated code satisfactory for given requirements

(maintainability, performance, size, …) ?
• not applicable to existing implementations

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 4

Alternative Solution
Verify implementation against verified design or directly

against security requirements.
So far applied to self-written or restricted code.
Surprisingly few approaches so far:
• J. Jürjens, M. Yampolski (ASE´05):

methodology + initial results for restricted C code
• J. Goubault-Larrecq, F. Parrennes (VMCAI´05):

self-coded client-side of Needham-Schroeder in C
• K. Bhargavan, C. Fournet, A. Gordon (CSFW´06):

self-coded implementations in F-sharp
May reduce first problem. How about other two ?

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 5

Towards Verifying Legacy Implementations

Goal: Verify implementation created independently.
Options:
3) Generate models from code and verify these.
• Advantages: Seems more automatic. Users in practice can

work on familiar artifact (code), don´t need to otherwise
change development process (!).

• Challenges: Currently possible for restricted code or using
significant annotations. Need to verify model generator.

2) Create models and code manually and verify code against
models.

• Advantages: Split heavy verification burden. Get some
verification result already in design phase (for non-legacy
implementations).

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 6

(UML) Models

Requirements

 Source Code

Weave
in

Code-/
Testgen.

Generate/
Verify

Analyze
against

Configurations

Gener.

Verify.

Configure

 Long-term goal: Tool-supported, theoretically sound,
efficient automated security design & analysis.

Idea: Extract models
from artefacts in
development and
use of software.

Background: Model-based Security Engineering

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 7

Why Behavioural Interfaces ?
Goal: verify implementations of significant complexity

automatically and exhaustively against non-trivial
requirements.

Have software model-checkers, but so far not used for
very complex implementations and very sophisticated
requirements (e.g. involving Dolev-Yao type attacker
models).

Do have powerful type checkers.
Idea: push the envelope by introducing behaviour into

types  behavioural interfaces
Long line of foundational work (rely/guarantee etc.), some

tools (SLAM, Blast)

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 8

Interface based Security Analysis in FOL

Based on usual Dolev-Yao model.
Approximate adversary knowledge set from

above:
Predicate knows(E) meaning that adversary

may get to know E during the execution of the
system.

E.g. secrecy requirement:
For any secret s, check whether can derive
knows(s) from model-generated formulas
using automatic theorem prover. [ICSE05]

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 9

Interface
to FOL

knows(N)∧ knows(KC)∧ knows(SignKC
-1(C::KC))

 ∧ ∀init1,init2,init3.[knows(init1) ∧ knows(init2) ∧
 knows(init3) ∧ snd(Extinit2(init3)) = init2

 ⇒ knows({SignKS
-1(…)}…) ∧ [knows(Sign…)]

 ∧ ∀resp1,resp2. […⇒...]]

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 10

FOL

ATP

Interface Model Verification

Check whether can derive
knows(s).

If yes, generate attack
scenario.

If no, s secret (wrt our attacker).

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 11

Just an Exercise in Code Verification ?

State of the art in practical code verification: execution
exploration by testing (possibly generated from
models). Limitations:

• For highly interactive systems usually only partial test
coverage due to test-space explosion.

• Cryptography inherently un-testable since resilient to
brute-force attack.

General approaches to formal software verification exist
(Isabelle et al), but limited use by (civilian) software
engineers, and usually not for sophisticated properties
like Dolev-Yao security.

 Develop specialized verification approach.

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 12

Interface: Model vs. Implementation

Implement
-ation

.java

Elements of connectionsSent and received data

„meaning“ „meaning“

compare meaning!

Backtrace
assignments

Defined during
model creation

Find Has

Abstract model

Consistent?

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 13

Input / Output

To extract input/output labels for state machine
transitions, analyze input / output mechanism used
in the implementation.

Many implementations (e.g. Jessie and JSSE) use
buffered communication where the message
objects implement read and write methods.
Translate these method calls to input / output
labels (need to track successive subcalls).

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 14

Example

Sending a protocol message (e.g. ClientHello):
• create the clientHello object with appropriate

message parameters
• create the message object msg by giving the

clientHello object as an argument
• call the write method at the msg object

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 15

p

qg

Example:
Interface
spec of SSL

I) Identify program points:
 value (r), receive (p), guard (g), send (q)
II) Check guards enforced

r

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 16

Guard g enforced by code?

b) Generate runtime check
for g at q from diagram:
simple + effective, but
performance penalty.

c) Testing against checks
(symbolic abstractions for crypto).

d) Automated formal local verification: conditionals
between p and q logically imply g (uses Prolog).

p

qg

Motivation – Model-based Security – Some details – Applications – Evaluation

Checking Guards

[ICFEM02]

[ASE06]

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 17

msg = Handshake.read(din, certType);

session.trustManager.checkServerTrusted
(peerCerts,suite.getAuthType());

msg = new Handshake(Handshake.Type.CLIENT_KEY_EXCHANGE, ckex);
 msg.write (dout, version);

p

q

g

try

catch

only possible way
without throwing
exception

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 18

Modular Verification with Interfaces

For program fragment p implementing a given
interface, generate set of statements
derive(L,C,E) such that adversary knowledge is
contained in every set K that:
– for every list l of values for the variables in L that

satisfy the conditions in C contains the value
constructed by instantiating the variables in the
expression E with the values from l

When considering single protocol run, can
construct finite set of such statements similar to
FOL formulas from security analysis.

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 19

Modular Verification: Formalisation

send: represents send command

g: FOL formula with symbols msgn representing
nth argument of message received before
program fragment p is executed

[d] p ²g : g checked in any execution of p
initially satisfying d before any send

write p ²g for [true] p ²g.

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 20

Modular Verification: Some Rules

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 21

Also:
• configuration

analysis:
(user
permissions,
firewall rules/
policies)
• code

traceability
(with Yijun Yu)

[FASE05,ICSE06,ASE07,
STTT07,ICSE08]

[FASE08]

Open-source

Tool Support

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 22

Some Applications

Analyzed designs / implementations /
configurations e.g. for

• Biometry- or smart-card-
based identification

• authentication (crypto protocols)
• authorization (user permissions,

e.g. SAP systems)
Analyzed security policies, e.g. for

privacy regulations.

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 23

Conclusion

Seemingly first attempt at formally based security
verification for crypto-based Java legacy
implementations.

Use interface specification to make verification of
large-scale implementations feasible.

Goals: Emphasis on automation, reach efficiency
using abstraction tailored to verification problem.

Experiences so far encouraging.

Still many challenges to address – collaboration
always welcome !

 Jan Jürjens, OU: Using Interface Specifications for Verifying Cryptoprotocols 24

Questions ?
More information

(papers, slides, tool
etc.):

http://www.jurjens.de/jan

