
Component Interfaces
for System Synthesis

FIT 2008

Sven Schewe
Joint work with Bernd Finkbeiner

Universität des Saarlandes
Reactive Systems Group

5th April 2008



The Problem Related Work Overview

The Problem

Env w
1

p
2

p
3

p
4

a

a,b

d

w
6

p
5

a,b

a

e

e
e

c

g

f

Given a specification ϕ and an architecture A,
find a distributed implementation satisfying ϕ.

Specification: Regular set of trees; e.g., CTL, CTL* or µ-calculus

Architecture: Communication Structure

Implementation: Set of programs (Moore machines or trees),
one for each component



The Problem Related Work Overview

Push-Button Approach – Automatic Synthesis

Automatically transforms specifications into implementations
for a given architecture

Works well for single-process architectures

Undecidable for most distributed architectures [PR90,FS05,SF07]

Advantage: Fully automatic
Unrealizable system specifications are detected early

Disadvant.: Works only for a small class of architectures
Extremely expensive (non-elementary lower-bound)

Component
Implementation

Component
Verification

System
Verification

Component
Specification



The Problem Related Work Overview

Manual Approach – Implement-and-Verify

1 Manually define component specifications

2 Manually write a resilient implementation for each component
(independent of other implementations)

3 Automatically or manually verify the correctness of the
distributed implementation

Advantage: Works for all architectures

Disadvant.: Mostly manual
Identifies errors only after implementation
Does not identify unrealizable requirements

Component
Implementation

Component
Verification

System
Verification

Component
Specification



The Problem Related Work Overview

Semi-Automatic Approach – Compositional Synthesis

Trade-Off between both approaches

1 Manually define component specifications

2 Automatically synthesize resilient component implementations

Advantages: Mostly automatic
Works for all architectures
Reasonable complexity
Detects unrealizable component specifications

Component
Implementation

Component
Verification

System
Verification

Component
Specification



The Problem Related Work Overview

Related Work

Distributed Synthesis

[PR90]: Distributed Reactive Systems are Hard to Synthesize
Pnueli and Rosner, FOCS 1990

[KV01]: Synthesizing Distributed Systems
Kupferman and Vardi, LICS 2001

[FS05]: Uniform Distributed Synthesis
Finkbeiner and Schewe, LICS 2005

Synthesis in Reactive Environments

[KMTV00]: Open Systems in Reactive Environments:
Control and Synthesis
Kupferman, Madhusudan, Thiagarajan and Vardi,
CONCUR 2000



The Problem Related Work Overview

Overview

Setting
Architectures
Implementations
Computations
Models
Compositional Synthesis Rule
Reactive Modules

The Algorithm

Conclusion



Architectures Implementations Computations Models Synthesis Rule Models

Architectures

Env w
1

p
2

p
3

p
4

a

a,b

d

w
6

p
5

a,b

a

e

e
e

c

g

f

Architecture ≈ directed graph

Nodes ≈ processes
Edges ≈ communication structure

Each process is either

a black-box process (sought implementation)
a white-box process (fixed implementation)
the environment Env (unrestricted behavior)

Each process has a fixed set of input and output variables



Architectures Implementations Computations Models Synthesis Rule Models

Implementation
Env w

1

p
2

p
3

p
4

a

a,b

d

w
6

p
5

a,b

a

e

e
e

c

g

f

In each step, each process reads the values of its input variables
and nondeterministically chooses the value of its output variables.

Implementation

An implementation contains a strategy for each process.

A strategy is a mapping from input histories to non-empty
sets of possible outputs
sb : (2Ib )∗ → Op, for Op = 22Op r {∅}
Regular strategy trees can be represented as finite-state
Moore machines



Architectures Implementations Computations Models Synthesis Rule Models

Computations

a

a¬a

a

a

a¬a

¬a a

a

a¬a

¬a

¬a

¬a a

Single Computation

Sequence of variable assignments (∈ (2V )∗)

Computation Tree

An implementation defines a set of possible computations

They can be identified with the paths of a total tree

The set of successors in each node is the product of the
individual process decisions (

⊗
p∈P Op)



Architectures Implementations Computations Models Synthesis Rule Models

System Models

A temporal or fixed point formula (CTL, CTL*, µ-calculus)
ϕ describes a regular set of labeled total trees.

a

a¬a

a

a

a¬a

¬a a

a

a¬a

¬a

¬a

¬a a

The total trees in this set are the system models of ϕ.



Architectures Implementations Computations Models Synthesis Rule Models

The Compositional Synthesis Rule

For a distributed architecture A
with set of black-box processes B = {b1, . . . , bn}
and CTL* or µ-calculus formulas ψ; ϕb1 , . . . , ϕbn

(ST) (A, ∅) �
∧

b∈B

ϕb → ψ

(DCI 1) (A, {b1}) � ϕb1

...
...

(DCI n) (A, {bn}) � ϕbn

(A,B) � ψ

where (A,B) � ϕ means that the set B ⊆ B of black-box
processes can guarantee ϕ against the remaining black-box
processes B r B



Architectures Implementations Computations Models Synthesis Rule Models

Implementations as Models

(A,B) � ψ means that there is an implementation
such that the computation tree is a model of ψ.

What is required for (A, {b}) � ϕ?

Full-Tree models:

there is a strategy tree for b that is a model of ϕ

suitable for universal specifications

Reactive models:

there is a strategy tree for b such that
every total sub-tree is a model of ϕ [KMTV00]

suitable for non-distributed systems

⇒ Resilient models



Architectures Implementations Computations Models Synthesis Rule Models

Full-Tree Models are too Weak for (A, {b}) � ϕ

ψ = AGa ∧ EF¬a (= false),

ϕ1 = AGa, and

ϕ2 = EF¬a

b
1

b
2

a

sb1 : x 7→ {a} ∀x ∈ ∅∗ and

sb2 : x 7→ ∅ ∀x ∈ (2{a})∗



Architectures Implementations Computations Models Synthesis Rule Models

Reactive Models are too Strong for (A, {b}) � ϕ

ψ = EFa,

ϕ = ψ = EFa

Env b
a

sb : x 7→ ∅ ∀x ∈ (2{a})∗



Architectures Implementations Computations Models Synthesis Rule Models

Resilient Models
Combining Full-Tree Models and Reactive Models

Resilient Models

there is a strategy tree for b such that

for every behavior of the remaining black-box processes

the computation tree is a model of ϕ

Resilient models lead to a sound and complete synthesis rule

Full-Tree models: Too weak → unsound

Reactive models: Too strong → incomplete

Resilient models: Sound and complete



Automata ϕ ⇒ A Resilience Knowledge Realizability

Part II

The algorithm



Automata ϕ ⇒ A Resilience Knowledge Realizability

Outline

1 From specifications to automata

2 Characteristic trees – capturing total trees with full trees

3 Quantification – finding computation trees of resilient models

4 Adjusting for white box processes – treating known
components correctly

5 Narrowing – ignoring unavailable information

6 Emptiness check – constructing a strategy



Automata ϕ ⇒ A Resilience Knowledge Realizability

Parity Tree Automata

Alternating Automata

Run on full Σ-labeled Υ-trees (for finite sets Σ and Υ)

May send copies to multiple states and in multiple directions
⇒ run-tree

Every path in the run tree must satisfy the parity condition

Nondeterministic Automata

Only one copy is sent in each direction

Can be used to simulate alternating automata

Suited for language projection and emptiness check

Symmetric Alternating Automata or ACGs

Only abstract directions � (for all successors) and
♦ (for some successor)

Suited for total trees



Automata ϕ ⇒ A Resilience Knowledge Realizability

From Specifications to Automata Label: 2V

a

a¬a

a

a

a¬a

¬a a

a

a¬a

¬a

¬a

¬a a

←− 2V −→

Trees

Each node in the computation tree is labeled with its direction

Unlabeled 2V -trees ⇒ 2V -labeled 2V -trees
– we (technically) do not insist on correct labels (for now)

Automata

Specification ϕ ⇒ symmetric alternating automaton A
such that A accepts exactly the system models of ϕ



Automata ϕ ⇒ A Resilience Knowledge Realizability

Characteristic Trees
Make Decisions Explicit

Label:
⊗
p∈P

Op × 2V

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2V −→

Trees

Each node is additionally labeled with the set of its successors

2V -labeled 2V -trees ⇒
⊗
p∈P

Op × 2V -labeled 2V -trees

– white-box strategies are ignored (for the moment)

Automata

Symmetric alternating automata ⇒ alternating automata

Successor set in label used to evaluate � and ♦ transitions



Automata ϕ ⇒ A Resilience Knowledge Realizability

Quantification
∀ Opponent Decisions

Label:
⊗

p∈W∪{Env ,b}
Op × 2V

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2V −→

Trees⊗
p∈P

Op × 2V -labeled ⇒
⊗

p∈W∪{Env ,b}
Op × 2V -labeled 2V -trees

“Opponents” can choose the
⊗

p∈Br{b}
Op part of the label

Automata

Dualization (Language complementation),

Nondeterminization,

Projection (Choice of the
⊗

p∈Br{b}
Op part of the label), and

Dualization



Automata ϕ ⇒ A Resilience Knowledge Realizability

White-Box Processes
Use Correct Implementation

Label: Ob × 2V

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2V −→

Trees

Trees with incorrect white-box strategies are eliminated

The white-box decisions are deleted from the label⊗
p∈W∪{Env ,b}

Op × 2V -labeled ⇒ Ob × 2V -labeled 2V -trees

The white-box processes can be represented as a Moore machine

Automata

Add the Moore machine to the automaton

Use its output to substitute for the missing input



Automata ϕ ⇒ A Resilience Knowledge Realizability

Direction
Use Correct Direction

Label: Ob
a¬a

a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2V −→

Trees

Trees with labels that are inconsistent with the directions are
eliminated

The directions are deleted from the label

Ob × 2V -labeled 2V -trees ⇒ Ob-labeled 2V -trees

Automata

Add the latest directions to the state of the automaton

Use it to substitute for the missing input



Automata ϕ ⇒ A Resilience Knowledge Realizability

Incomplete Information Label: Ob
a¬a

a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2Ib −→

Trees

A process may not react differently on indistinguishable paths

Trees that violate this condition are eliminated

Indistinguishable paths are merged into one path

Ob-labeled 2V -trees ⇒ Ob-labeled 2Ib -trees

Automata

All copies that were sent in some direction
(d , d ′) ∈ 2Ip × 2VrIp are sent in direction d

Culmination of obligations



Automata ϕ ⇒ A Resilience Knowledge Realizability

Realizability Label: Ob
a¬a

a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2Ib −→

Existence of a strategy is verified by a non-emptiness test

Nondeterminization

Emptiness test for the resulting nondeterministic automaton

Constructive extension: Synthesis of a Moore machine

Complexity

2EXPTIME for ACTL* and µ-calculus

3EXPTIME for CTL*

EXPTIME in the size of the Moore machine



Automata ϕ ⇒ A Resilience Knowledge Realizability

Realizability Label: Ob
a¬a

a¬a

a¬a a¬a
a¬a

a¬a

¬a a

a¬a
a¬a

a¬a a¬a
a¬a

a¬a

¬a a

¬a a

←− 2Ib −→

System Tautology ST – (A, ∅) �
∧

b∈B

ϕb → ψ

Alternating word automaton with single letter alphabet

Non-emptiness test directly on the alternating automaton

Complexity

EXPTIME for ACTL* and µ-calculus

2EXPTIME for CTL*

PTIME in the size of the Moore machine



Conclusions

Conclusions

Compositional synthesis

Detects errors early

Sound and complete for all distributed architectures

Automatic (except for component specifications)

Reasonable complexity (2EXPTIME vs. non-elementary)

Component
Implementation

Component
Verification

System
Verification

Component
Specification

Component
Implementation

Component
Verification

System
Verification

Component
Specification

Component
Implementation

Component
Verification

System
Verification

Component
Specification

Automatic Synthesis Implement-and-Verify


	
	The Problem
	Related Work
	Overview

	Setting
	Architectures
	Implementations
	Computations
	Models
	Synthesis Rule
	Models

	The algorithm
	Automata
	A
	Resilience
	Knowledge
	Realizability

	Conclusions
	Conclusions


