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Our Approach: Requirements Feedback Loop

• Feedback loop between requirements and design phases
1 Requirements: Object-Z specification M (functional),

Temporal Logic formulas ρ (non-functional)
2 Translate to SMV: φ(M), φ(ρ)
3 Modelcheck result (Consistency and φ(M) ` φ(ρ))
4 Use feedback for improvement of requirements and iterate
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Specification in Object-Z

• Extension of specification language Z by objects:
• OO-features: Classes, objects
• Interfaces (by visibility lists)
• Inheritance, polymorphism

• Formal specification of Interfaces in a very general way

• Full predicate calculus available to specify invariants and
operations

⇒ Rich interfaces (for functional requirements) can be
explicitly specified

⇒ Non-functional requirements integrated through temporal
logic and feedback loop
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SMV Modelchecking

• SMV is a classical Modelchecker for CTL and LTL

• SMV’s input language similar to programming language
(Verilog style)

• Supports simple datatypes and modules

6



Translation from Object-Z to SMV

• Profit from syntactic similarities
⇒ Translation identifies: types(bool), constants, classes,

instantiation

• Watch out for semantical differences
⇒ Special: state transition, operations, operation composition

⇒ SMV: "redefining var"

7



Special Translation for Operations: Stimulus

In O-Z operations are offered, must be invoked by environment
Additional variable mimicks operation stimulus explicitly in SMV
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Translation from Object-Z to SMV

• Translation Soundness
• Translation is a homomorphism φ of the boolean lattices of

Object-Z and SMV
• State change preserves φ: both formalism contain logical

representation of “change”
• In Object-Z: pre-state s, post-state s′

• In SMV: pre-state s, post-state next s

s

φ

��

OZ system step // s′

φ

��
s

SMV system step // next s

• Translation not complete:
• Quantification only for finite domains
• OO notion of self not supported by SMV modules

. . . but sufficiently practical
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The TWIN Problem and ThyssenKrupp Solution
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Feedback Loop: Example from TWIN

• Example requirement: cabin’s movements are restricted by
boundaries shaft:
LevelGround ≤system.curr_level ≤ LevelTop

• Translation into SMV:
CabinStaysInShaft: assert

G (LevelGround <= system.curr_level)

& (system.curr_level <= LevelTop);

[cont’d]
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Feedback Loop: Example from TWIN [cont’d]

• SMV detects violation of safety requirement:

⇒ Operation MoveUp responsible for illegal change of
curr_level

⇒ Add precondition curr_level < LevelTop
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Results of the Case Study

• All safety properties of TWIN system could be successfully
verified

• Observations:

◦ Feedback loop enables detection of inconsistencies

◦ Specification is abstract description of interfaces reducing
to behaviour relevant for safety, e.g. DSC

actual implementation of cabin selection is irrelevant

⇒ this part of the behaviour is not part of interface
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Summary and Lessons Learned

• Summary:
• Interface specification with Object-Z
• Feedback loop to requirements for quality:

• Translation to SMV
• Modelcheck specification

• Case study TWIN-elevator shows feasibility

• Object-Z: formal specification “traditional way”
• Stepwise, iterated specification refinement
• Elegant and abstract (in comparison to SMV)
• Temporal logic together with Object-Z seems natural
• Pragmatism of translation; so far no restriction
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